
Mastering Focus and the Robot Lifecycle

Understanding Focus focus

Robot Focus is Activity States necessary to run actions

It guarantees Activity Only one at a time： Activity Known as the owner of Robot Focus. This ensures that the robot

focus owner has sole control of the robot

Robot focus is managed by a service that is used to give focus to activities. T his mechanism implies that Activity Gain or

lose robot focus at any time.

Robot life cycle

QiSDK Provides a robot lifecycle that allows any Activity Have a robot focus.

Wish to use QiSDK object must implement the RobotLifecycleCallbacks interfaces. such

as Activity You can implement this interface:

public class MyActivity extends RobotActivity implements RobotLifecycleCallbacks

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Register the RobotLifecycleCallbacks to this Activity.
 QiSDK.register(this, this);
}

<p>As well as, in onDestroy Unregister in method.</p>

@Override
protected void onDestroy() {
 // Unregister the RobotLifecycleCallbacks for this Activity.
 QiSDK.unregister(this, this);
 super.onDestroy();
}

Getting the Robot Spotlight

when Activity Getting the focus of Android (move to the foreground), it will request the robot's focus.

when Activity Getting the robot spotlight. onRobotFocusGained The callback function will be registered to the

 Activity Every single one of these RobotLifecycleCallbacks Called by.

void onRobotFocusGained(QiContext qiContext);

Warning

This callback runs in a background thread, so you can't manipulate the UI components directly in it. See also back to UI thread

to run the code on the UI thread.

It provides a QiContext that allows you to.

create actions,

Creating resources for actions,

Obtaining the services of a robot（services）.

create action:

// Create a Say action with a QiContext.
Say say = SayBuilder.with(qiContext)
 .withText("Hello")
 .build();

Creating Resources resource:

// Create an Animation with a QiContext.
Animation animation = AnimationBuilder.with(qiContext)
 .withResources(R.raw.elephant_a001)
 .build();

Access to services service:

// Get the HumanAwareness service with a QiContext.
HumanAwareness humanAwareness = qiContext.getHumanAwareness();

In this callback, you can run your actions:

run action:

// Run a synchronisedaction.
say.run();

// Run an asynchronousaction.
say.async().run();

void onRobotFocusLost();

Warning

This callback runs in a background thread, so you can't manipulate the UI components directly in it. See also return to the UI

thread to run your code in the UI thread.

 <p>About when Activity For more information on how you can lose focus.

Impact on actions

When this callback is called, Activity cannot run on Pepper until it regains focus on the robot actions:

// This will fail if robot focus is lost.
say.run();

In addition, if onRobotFocusLost is called while the operation is running, the execution of the operation will stop and an

exception will be thrown: the

// This will raise an exception.
say.run();

say.async().run().thenConsume(future -> {
 if (future.isSuccess()) {
 // This will not be called.
 } else if (future.hasError()) {
 // This will be called.
 }
});

Because Listeners can be triggered without robot focus, it should be removed onRobotFocusLost Callbacks under all

Listeners:

// Remove listeners from LookAt.
if (lookAt != null) {
 lookAt.removeAllOnPolicyChangedListeners();
}

// The Future will continue its execution.
Future<List<Human>> humansAroundFuture = humanAwareness.async().getHumansAround();

// The listener will still be triggered.
humanAwareness.addOnHumansAroundChangedListener(listener);

if (humanAwareness != null) { humanAwareness.removeAllOnHumansAroundChangedListeners(); }

If a service listener is not removed from the onRobotFocusLost callback, the listener will be triggered for all application

lifecycles. Listener is triggered for all application lifecycles.

Rejecting the Robot Spotlight

The focus can reject your Activity , in certain situations. For example, if the robot is in an

unstable state. onRobotFocusRefused The callbacks will be used by every callback

registered to the Activity upper <span

class="pre">RobotLifecycleCallbacks invocations:

void onRobotFocusRefused(String reason);

The reason for rejecting the focus is provided as a parameter.

Performance and limitations

incapable of guaranteeing onRobotFocusGained or onRobotFocusRefused will be called. In some cases, the

 RobotLifecycleCallbacks may never be notified of focus acquisition or focus rejection. The application should implement

its own end-of-time mechanism to handle this contingency and avoid waiting indefinitely.

<div class="section" id="get-back-on-ui-thread">

Return to UI thread

You may want to update the UI in robot lifecycle callbacks. For example, you want to update the TextView .

To achieve this, you have two common possibilities .

Android-based programmes

 Activity class providing runOnUiThread method runs a Runnable In the UI thread:

@Override
public void onRobotFocusGained(QiContext qiContext) {

 Say say = SayBuilder.with(qiContext)
 .withText("Hello")
 .build();

 // Synchronous call.
 say.run();
 // Update the TextView to notify that the Say action is done.
 runOnUiThread(() -> textView.setText("Done!"));
}

<p>In addition, this object must be registered to the Activity in order to receive RobotLifecycleCallbacks Method invocation.</p>

<p>It has to be in onCreate method to register the:</p>

<div class="section" id="losing-the-robot-focus">

 <h3>Loss of robot focus</h3>

 <p当 Activity Loss of robot focus, onRobotFocusLost The callbacks are used by each callback registered in the Activity upper RobotLifecycleCallbacks Called by.</p>

 <div class="section" id="impact-on-services">

 <h4>Impact on services services

 </h4>

 <p>Robot services are not affected when the robot focus is lost.</p>

 <p>This means that with the services created by the Future will continue to execute and will still trigger the Listeners associated with any service:

 </p>

 <p>Because Listeners can be triggered without the robot's focus, you should remove all the objects in the onRobotFocusLost Service in callback

 listeners:</p>

 <div class="highlight-java notranslate">

 <div class="highlight">

 <pre>// Remove listeners from HumanAwareness.

https://www.softbankrobotics.com.cn/en/developer/_images/robot_life_cycle.png

