
Creating a robot app

1. Creating a project

To create a robot application, we first create a standard Android project, which we then convert into a robot application.

Step Action

Select in Android Studio: File > New > New Project

Name your application

.

Now that you have created your Android project, let's convert it into a robot application:

Creating Robot AppsNow that you have created your Android project, let's convert it into a robot app. Creating Robot

AppsNow that you have created your Android project, let's convert it to a robot app.

After creating the project, select File > New > Robot Application.

Steps Action

Select the lowest Robot SDK version and module for robotify. Select OK.

Synchronising projects with Gradle files

Results

Your project is now a robotics application!

So you should see the following changes:

The

robotsdk.xml file has been added to the assets/robot directory

The toolbar now has some new available tools QiSDK dependency has been added to the build.gradle file under

your module. file under your module

A uses-feature tag has been added to your AndroidManifest.xml

robotsdk.xml file contains the minimum robots SDK version for the project (previously selected one)

The new available tools allow you to start a new robots virtual machine

and connecting to real robots

.

QiSDK dependencies give you all the functionality you need to interact with Pepper

.

The uses-feature tag indicates that your app uses the control Pepper and will only be available on robot tablets

.

3. Implementing QiSDK and the robot life cycle

We've configured a robot app, now it's time for our code to control Pepper's body

.

Step Action

be in onCreate method to register the MainActivity up to QiSDK :

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Register the RobotLifecycleCallbacks to this Activity.
 QiSDK.register(this, this);
}

in onDestroy Unregister in method.

@Override
protected void onDestroy() {
 // Unregister the RobotLifecycleCallbacks for this Activity.
 QiSDK.unregister(this, this);
 super.onDestroy();
}

class=‘last’>Hint: You can also cancel all RobotLifecycleCallbacks for this campaign using QiSDK.unregister(this) to

unregister all RobotLifecycleCallbacks for this activity, being careful not to inadvertently delete

callbacks that should remain registered

envoy MainActivity class reversionary RobotActivity :

public class MainActivity extends RobotActivity

Why? This activity brings visual feedback when language interactions run, such as SpeechBar.

class="first">envoy MainActivity class realise RobotLifecycleCallbacks connector:

public class MainActivity extends RobotActivity implements RobotLifecycleCallbacks

Why? This interface allows RobotLifecycleCallbacks to know Activity when it registers, gains, or loses

RobotFocus.

rewrite onRobotFocusGained , onRobotFocusLost and onRobotFocusRefused method:

@Override
public void onRobotFocusGained(QiContext qiContext) {
 // The robot focus is gained.
}

@Override
public void onRobotFocusLost() {
 // The robot focus is lost.
}

@Override
public void onRobotFocusRefused(String reason) {
 // The robot focus is refused.
}

Why? The onRobotFocusGained method is called when the associated Activity gets the robot Focus. After getting the Focus,

we can perform various actions on the robot. When onRobotFocusLost method is called, the related Activity loses the Focus

and the operations will not be able to run on Pepper.

Important

 onRobotFocusGained and onRobotFocusLost methods run in the background, and the UI thread is not blocked when the

QiSDK is used synchronously

.

https://www.softbankrobotics.com.cn/en/developer/detail/image/new_robot_app.png
https://www.softbankrobotics.com.cn/en/developer/_images/emultor_btn.png
https://www.softbankrobotics.com.cn/en/developer/_images/connect_button.png

